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Quantum wells (QW) have received much attention because they not only have a

wide variety of device applications but also provide one of the simplest theoretical and

experimental settings for investigating electron tunneling processes.1 Recent developments

of ultrafast laser techniques have made it possible to directly observe such tunneling process

of an electronic wave packet, such as reported by Leo et al,2 who have employed a biased

asymmetric double quantum well (DQW) system which consists of a wide well (WW), a

narrow well (NW) and separated by a thick barrier, grown by the molecular beam epitaxy

technique. In their experiment, a nonstationary state localized in the WW, which is

initially created by an incident pulse, moves to the NW through the tunneling process,

and then goes back to the WW, and so on. This coherent motion of the electronic wave

packet has been detected as a quantum beat signal by using time-resolved degenerate

four-wave mixing and pump-probe spectroscopy.

On the other hand, a similar physical situation in a vibronic system has been well

studied by Felker and Zewail.3 Since the initial state has restricted transition moments

to the resonant states, it is also possible to create the localized vibronic wave packet by

pulsed excitation. If there do not exist so many states coupled to the initially prepared

state, we can see the oscillating motion of the vibronic wave packet within the resonant

states as the quantum beat signal. Felker and Zewail3 have observed two kinds of quantum

beats in a time-resolved fluorescence spectrum, namely in-phase and out-of-phase beats

which, respectively, reflect the dynamics of the population of the initially prepared state

and that in the coupled states. By analogy with their observation and theoretical analysis,

we can naturally expect the existence of a 7r-phase-shifted quantum beat in a time- resolved

luminescence spectrum from the DQW.4 Since the DQW can be "tailored" to a wide range

of specifications, this system has the advantage of elucidating characteristics of the r-phase-

shifted quantum beats in detail. In this Letter, we present the results of a theoretical study

of quantum beats in time-resolved luminescence spectra from a biased asymmetric DQW,

especially paying attention to the relation of the beat modulation depth and the tunneling

interaction.

Our theory is based on the master equation 5 7 in the strong-collision approximation, -

ih 5p(t) = [H, p(t)] - rp(t)(1 -r

in which the relaxation operator is characterized by the matrix elements

< Inirp(t)Im >= rm-pmm(t) - PM.) (2a) Co o,
,;Id/o

Dit ,I a
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and

< mI1p(t)In >= tmn.pomm(t) (m # n) , (2b)

with an equilibrium distribution pmm, where

mm = ,, , (3a)

and

rmn- 2 + + , (m # n) (3b)

The Hamiltonian in Eq. (1) includes the zeroth-order Hamiltonian of the relevant sys-
tem, that of the radiation fields, and the system-radiation interaction under the rotating-

wave approximation. We also adopt the phase-diffusion model,' in which both the incident

and scattered lights are characterized by relaxation constants, Fi and Fs, respectively. By

solving the master equation up to fourth order with respect to the system-radiation inter-

action, we can obtain Lhe stationary as well as the time-dependent luminescence intensities.

In the following, we adopt a similar structure studied in Ref. 2 and dope the extended

barrier regions with a suitable dopant to give free-electrons carriers. Figure 1 shows an

illustration of the biased asymmetric DQW, consisting of a 190 A.-GaAs WW, a 8oA-
Alo.lGao.gAs middle barrier and a 145A-GaAS NW.9 In the case of an infinitely-thick

middle barrier, each quantum wells has two states, INk) and IWk) (k = 1,2), in the
NW and WW, respectively. The bias applied to DQW with a moderately thick barrier

separating two wells makes these four states quasi-stationary with energy widths, and these

quasi-states and their widths are calculated numerically according to the procedure shown
in Ref. 10. In the present calculation, we employ two values of bias voltage, one called the

resonant voltage at which the energies of the two excited states IN2) and IW2 ) coincide with

each other11 , and the other one set at 20% more than the resonant voltage. We assume

that only the IN1) state of the DQW under bias is populated before the irradiation.

Figure 2 shows the luminescence spectra. The photon energy of the incident light

is tuned to the average of the energies of the excited states IN2 ) and 1W2 ) which may
be align for certain bias. Two sharp peaks correspond to Raman peaks. The two lowest

luminescence peaks, labelled Li and L2, originate from the emission from the states IN2 )

and IW2) to the ground state of WW 1W1), respectively, whilc thc ground state of the

NW IN,) is the final state of the other two luminescence components, L3 and L4. The
amplitudes of the peaks Li through L4 depend on the population of the upper two states

IN2 ) and IW2 ), which in turn relate to the probabilities of individual states in each of the
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wells. These peaks are discussed further in view of the population of the states later. In

Fig. 3, we have calculated the luminescence decay curves whose central frequencies are set

to those of the luminescence peaks L3 (solid line) and LI (dashed line), respectively. We

can see the phase-shifted quantum beats in these spectra. Since the initiatlly-created quasi-

stationary state is localized in the NW, the luminescence decay curves corresponding to the

L3 and L4 peaks show in-phase quantum beats, while those to the Li and L2 peaks have

out-of-phase quantum beats. In these calculations, the envelope function of the incident

pulse has been assumed to have the form

F(t) = exp(--YA)[1 - exp(-7YB(t)] , (4)

in which the temporal width has been set to be about a 330-fs full-width at half-maximum

(FWHM).' 2 In actual experiments, such an ultrafast IR pulse may be realized by the

application of the pulse-compression technique using optical fibers. 3 On the other hand,

one simultaneously has to prepare an ultrafast detection system for observing the ultrafast

response from a nonstationary state. This problem could be solved by using a streak

camera measurement 4 a or fluorescence upconversion method. 141

Here, to see the characteristics of the beat modulation depths, we bave also calculated

the normalized out-of-phase and in-phase quantum beats, which are shown in Figure 4. The

normalized beat modulation is obtained by dividing the off-diagonal part of the intensity

by the diagonal part. These results show the deep modulation of the out-of-phase beat,

independent of the value of the bias voltage, i.e., the magnitude of the tunneling interaction.

As for the normalized beat modulations of the L3 and L4 components, in the resonant case

of the bias voltage, they have almost the same modulation depths as those of the out-of-

phase beat components (L1 and L2). However, in the off-resonant case, we can see the

small modulation, and the two components have different modulation depths.15

To quantitatively understand these results, it is convenient to analyze the analytical

expression of the time-dependent luminescence intensity which is derived by assuming a

6-function pulse. The ratio of the normalized beat of the Li component, B(L1, t), to that

of the L2 component, B(L2, t), and that for the L3 and L4 components are, respectively,

given by
= B(L1, t) a2 + K 2

B(L2,t) - ,e2o 2 + 1 (5a)

and
R B(13, t) 2 + 2 (b
- B(L4, t) r , 2/32 + (5b)
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where r r a = PU23231I and =(114/A13)? . HereA = (14-13) and Pmn is the

transition moment between the states m and n. The relaxation constant F is the average
value of rlf - Fa + fs, where rEq is the dephasing constant between the resonant state
a and the final sate f, r.. is the decay constant of the resonant state a, and Fs represents
the spectral resolution of the detector. The subscripts to R refer to the transition states
in a way that there are four states 1 through 4 to the whole structure. In the biased

asymmetric DQW, the first two states 1 and 2 are almost localized in the NW and the
WW, respectively and have been called the ground states of the NW and WW, while the

other two excited states are expressed as

13) = cos0IN 2 ) + sin09W 2 ) (6a)

and

14) = sin 01N 2 ) - cos01W 2 ) , (6b)

where the angle 0 is determined by the magnitude of the tunneling interaction between

the zeroth-order states [N2 ) and 1W2 ).

From these expressions, we can obtain a= 1 which gives R 12 = 1. Since the value
of a is not dependent on the value of the bias voltage, the normalized beat of the two
out-of-phase components always show the same beat modulation depths (ideally, 100%

modulation'). Of course, the slight deviation seen in Fig. 4 is attributed to the breakdown
of the approximation that the first two states are localized in either wells. On the other

hand, the parameter # is given by 1 = tan2 9, so that the in-phase beats do not have the
same modulation depths except in the resonant case of the bias voltage. It should be noted
that since the ratio R 34 is expressed in terms of the parameter 13 and the experimentally-
determinable parameter K, by measuring the ratio R 34 , it should be possible to estimate

the magnitude of the interaction between the two zeroth-order excited states JN2) and

1W2 ), i.e., the magnitude of the tunneling interaction.

The above analysis is based on the assumption that both the initial and final states
are well-localized states in either well. This assumption is not valid in the DQW with the

thin middle barrier; however, a similar analysis is possible even in such cases, but under
restricted conditions. If the value of the bias voltage satisfies the resonance condition,
the excited states 13) and 14) are expressed as completely symmetric and antisymmetric

combinations of the singlc QW statcs IN2) and JW.2). These special forms of the resonant
states give the following simple expressions for a and 3:

a ytan€ + 1 -y - tan(7a- (7a)y tan d - 1-y+ tanq)
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and-- tan 2 (7b)

7 + tan '

where -y is a constant, and the angle € determines the magnitude of the tunneling interac-

tion between the zeroth-order states IN,) and IW1 ),

11) = cos OINI) + sin 0IW 1 ) (8a)

and

12)=sin0uINj)-cos0)IW) (8b)

Finally, we would also like to note another possible excitation and detection scheme.

According to the DQW system employed by Leo et a 2, the following scheme is also possible:

LH pulsed -- WW +- tunneling -- NW

excitation

4.1

LH HH

where LH and HH denote the light-hole and heavy-hole states, respectively.

In conclusion, we have numerically calculated the luminescence intensity from a biased

asymmetric DQW. In the case where the initial and final states are localized in either

well, the out-of-phase beats always have the same normalized beat modulation depths,

independent of the magnitude of the tunneling interaction within the resonant states,

while the in-phase beats do not have the same modulation depths except in the resonant

bias-voltage case. From the ratio of these normalized beat modulations of the in-phase

beats, it could be possible to estimate the magnitude of the tunneling interaction. In the

case where the initial and final states are delocalized in both wells, we have proposed a

similar scheme for determining the magnitude of the tunneling interaction within these

two lowest states.

We appreciate helpful discussion with Dr. Mark I. Stockman, and one of us (YO)

would like to thank Professor T. Abe and Dr. H. Kono for helpful suggestions. This work

was supported by the Office of Naval Research and the National Science Foundation under

Grant CHE-9196214.
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Figure Captions

Fig. 1. Illustration of the biased asymmetric DQW along with the energies for four states

IN1), IN2 1, IWI) and IW2) at the resonant bias voltage of 6.36 kV/cm.

Fig. 2. Stationary luminescence spectra in the resonance case of the bias voltage (a) and in

the off-resonance case (b). The central energy of the incident light is tuned to be the

average of the energies of the resonant states IN2) and IW2). The spectral widths
of the incident and scattered lights are assumed to be ]PI = rs = 0.05 meV. For

the relaxation parameters, we employ the following values (in the unit of meV) 12 :
A 1.0X10-3 y 4 . -2 (pd) = (pd) = (pd) = (pd) 0

71 - 0.0, 72 1.×1 - ,3-74-.0×10,1 14 -723 -I24 -0.8

and -yp) = 0.3.

Fig. 3. Luminescence decay curves in the resonance case (a) and the off-resonance case (b).

The solid and dashed lines represent the decay curves associated with the luminescence

components L3 and L1, respectively. The dotted line in (a) shows the pulse envelope

function, which has about a 330-fs FWHM and corresponding coherent spectral width,
2.0 meV. The spectral resolution of the detector is also set to be 2.0 meV. As for the

relaxation parameters, we employ the same values as those in Fig. 2.

Fig. 4. Left-hand side: Normalized beat modulations of the out-of-phase beats in the reso-

nance case (a) and the off-resonance case (b). The solid and dashed lines, respectively,

denote the normalized quantum beats associated with the Li and L2 luminescence
components. All the parameters are set in value to be the same as those in Fig. 3.

Right-hand side: Normalized beat modulations of the in-phase beats in the resonance
case (a) and the off-resonance case (b). The solid and dashed lines, respectively,

denote the normalized quantum beats associated with the L3 and L4 luminescence
components. All the parameter values are set to be the same as those in Fig. 3.
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